

Soukutsu Pty Ltd

1290 Greendale Road Water Sensitive Urban Design: Stormwater Assessment

November 2020

Table of contents

1.	Introduction		
	1.1	Background	4
	1.2	Purpose of this report	5
	1.3	Scope and Limitations	5
2.	Planr	ing and Legislative Considerations	6
	2.1	MKD Architects River Gardens Cemetery DA Masterplans	6
	2.2	Liverpool City Council	6
	2.3	Acts	7
	2.4	Policies, Guidelines, and standards	7
3. Site Analysis		Analysis	9
	3.1	Existing Site	9
	3.2	Proposed Development	10
4.	Wate	r Sensitive Urban Design: Stormwater - Risks and Opportunities	12
	4.1	Potential Stormwater Impacts	12
	4.2	Stormwater Drainage Concept Plan (SDCP) - Management Measures and Opportunities	15
5.	Storm	nwater Simulations	18
	5.1	Onsite Detention Storage (DRAINS)	18
	5.2	Stormwater Pollution (MUSIC)	19
6.	Liver	oool City Council Planning Control Assessment	21
7.	Summary and Conclusions		

Table index

Table 4-1	Potential Water Balance Impacts	12
Table 4-2	Potential Stormwater Pollution Impacts	13
Table 4-3	Potential Stormwater Peak Flows and Flood Risk Impacts	13
Table 5-1	Stormwater Onsite Detention Modelling Results	19
Table 5-2	Preliminary Basin Parameters	19
Table 5-3	Stormwater Pollution Modelling Results	20
Table 6-1	Liverpool City Council Planning Control Assessment	21

Figure index

Figure 1-1	Location of proposed development site	.4
Figure 3-1	Existing Site	.9

Figure 3-2	Proposed Site	.1	1
------------	---------------	----	---

Appendices

Appendix A – Development Proposal

Appendix B - Stormwater Drainage Concept Plan (SDCP)

1. Introduction

1.1 Background

Soukutsu Pty Ltd ATF Wallacia Trust (Soukutsu) engaged GHD Pty Ltd (GHD) to undertake a Water Sensitive Urban Design: Stormwater Assessment to provide the relevant documentation in support of a Development Application (DA) to Liverpool City Council.

The subject of the DA is a proposed development comprising of the demolition of existing structures and construction of a cemetery, crematoria, community facilities, administration buildings, halls, chapels and other buildings and structures all associated with the operation of a cemetery with a garden, parkland and landscape setting. The proposal also includes internal roads, lakes and ponds.

The proposed development is located on the site identified as 1290 Greendale Road, Wallacia (see Figure 1-1) and legally described as Lot 1 in DP 776645 in the Liverpool City Council Local Government Area (LGA). The site is located on the western side of Greendale Road and eastern side of the Nepean River. The surveyed land area is approximately 73.46 ha.

Figure 1-1 Location of proposed development site

1.2 Purpose of this report

Purpose of this report is to compile a Water Sensitive Urban Design: Stormwater assessment at DA stage for the proposed development which will accompany the DA application to Liverpool City Council.

1.3 Scope and Limitations

This report: has been prepared by GHD for Soukutsu Pty Ltd and may only be used and relied on by Soukutsu Pty Ltd for the purpose agreed between GHD and the Soukutsu Pty Ltd as set out in this report.

GHD otherwise disclaims responsibility to any person other than Soukutsu Pty Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Soukutsu Pty Ltd and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

2. Planning and Legislative Considerations

2.1 MKD Architects River Gardens Cemetery DA Masterplans

The development proposal (Appendix A) comprises of a cemetery, crematoria, community facilities, administration buildings, halls, chapels and other buildings and structures all associated with the operation of a cemetery with a garden, parkland and landscape setting. The proposal also includes internal roads, lakes, and ponds.

2.2 Liverpool City Council

Local government is the primary authority responsible for land use planning in NSW. The proposed development is in the Liverpool City Council LGA

2.2.1 Liverpool Local Environmental Plan (LEP) 2008

The LEP 2008 is a legal document containing development standards applying to land in Liverpool. It guides planning decisions and for each piece of land and specifies what may be built, what land may be used for, and what building heights and floor spaces are allowed.

The proposed development is in Rural Zone RU1 Primary Production.

Cemeteries and associated civil works are permissible in the RU1 zone, subject to complying with the objectives of the RU1 zone and relevant requirements contained in Liverpool LEP 2008 and Liverpool DCP 2008.

2.2.2 Liverpool Development Control Plan (DCP) 2008

Liverpool DCP guides growth in the Liverpool LGA, and Part 1 General Controls for all Development applies to all proposed developments. This includes Section 6 – Water Cycle Management. The DCP is supported by technical guidelines.

In addition to the complying with Part 1 of the Liverpool DCP, the proposal must also comply with Part 5 Development in Rural and Environmental Zones (Clause 9.13 Cemeteries, Crematoriums and Funeral Chapels).

2.2.3 Pre - Development Application Advice (PL-34/2020)

Following the pre-DA meeting of the 27 May 2020, Council issued the following requirements with respect to Stormwater Management and Water Sensitive Urban Design:

Stormwater

- Stormwater drainage for the site must be in accordance with Council's Development Control Plan.
- A stormwater concept plan shall be submitted with the application.
- The stormwater concept plan shall be accompanied by a supporting report and calculations.
- On-site detention is required to be provided for the site.
- The on-site detention system must be within common property and accessible from the street without going through dwellings or private courtyards.

- Discharge point shall be shown on the stormwater plan, stormwater discharge shall not adversely impact any neighbouring properties.
- A water quality treatment device shall be provided in accordance with Council's Development Control Plan. A MUSIC model shall be submitted with the development application.
- There is a defined overland flow path crossing the site. The overland flood study shall confirm that the proposed developments will not have any adverse flooding impact in the vicinity.

2.3 Acts

2.3.1 Environmental Planning and Assessment Act 1979

The EP&A Act, administered by the NSW Department of Planning, Industry and Environment, is the core legislation relating to planning and development activities in NSW and provides the statutory framework under which development proposals are assessed. The EP&A Act aims to encourage the proper management, development and conservation of resources, environmental protection and ecologically sustainable development.

2.3.2 Water Management Act 2000

The Water Management Act 2000, (WM Act) is administered by regulators including WaterNSW and Department of Industry: Water to manage water resources. The aim of the WM Act is to ensure that water resources are conserved and properly managed for sustainable use benefiting both present and future generations. It is also intended to provide formal means for the protection and enhancement of the environmental qualities of waterways and their in-stream uses as well as to provide for protection of catchment conditions. Fresh water sources throughout NSW are managed by water sharing plans (WSPs) under the WM Act.

Principles of the WM Act relating to drainage and floodplain management include the need to avoid or minimise land degradation including soil erosion, compaction, geomorphic instability, and waterlogging, and the need for controlled activity approval when working near watercourses.

2.3.3 Protection of the Environment Operations Act 1997

The Protection of the Environment Operations (POEO) Act 1997, is administered by the NSW Environment Protection Authority (EPA) and is implemented throughout NSW to protect, restore and enhance the quality of the environment. The aim of the POEO Act is to reduce risks to human health, provide increased opportunities for public involvement and participation in environment protection, rationalise, simplify and strengthen the regulatory framework for environment protection and improve the efficiency of administration of environment protection legislation.

To ensure that potential impacts on stormwater are managed in accordance with the objectives of the POEO Act, mitigation measures that would need to be implemented during the construction and operational phases.

2.4 Policies, Guidelines, and standards

2.4.1 NSW Floodplain Development Manual

The Floodplain Development Manual and NSW Flood Prone Land (NSW Government, 2005) policy concerns the management of flood-prone land within NSW. It provides guidelines in relation to the management of flood liable lands, including any development that has the

potential to influence flooding, particularly in relation to increasing the flood risk to people and infrastructure. Activities of the project which have the potential to increase flood risk through, for example, increasing stormwater runoff would be subject to consideration under the Floodplain Development Manual.

2.4.2 Australian Rainfall and Runoff (ARR, 2019)

Australian Rainfall and Runoff (ARR, 2019) is the primary technical publication for stormwater and hydrological estimates and design considerations. The publication was the result of a number of years of updates to the previous version of Australian Rainfall and Runoff (Engineers Australia, 1987). The technical analysis and development of the hydrologic and hydraulic models, including the management and flooding at the site would need to consider this guideline.

2.4.3 Managing Urban Stormwater: Soils and Construction – Volume 1 (Landcom, 2004)

The document Managing Urban Stormwater: Soils and Construction, Volume 1 (Landcom, 2004) outlines the basic principles for the design and construction of sediment and erosion control measures. This document relates particularly to urban development sites, however it is relevant to the Project as it provides guidance on the configuration of erosion and sedimentation controls required during construction.

3. Site Analysis

3.1 Existing Site

The existing site generally comprises paddocks with little to no hardstand areas. Referring to Figure 3-1 there are four general areas of elevated topography. The site west of Elevated Topography 2 and 3 drains to the Nepean River, while the catchment east of this location drains to Duncans Creek. The site is located within the Nepean River floodplain.

Within the Nepean River floodplain, topographic levels are generally in the range of 36 to 38 m AHD, with Duncans Creek invert ranging between 32 to 35 m AHD depending on location. The Nepean River invert is approximately 23 to 24 m AHD with the elevated topography at 42 to 44 m AHD. Duncans Creek is thus elevated with respect to the Nepean River and there are significant topographic undulations across the site.

The Nepean River is located along the western boundary of the site draining in a northerly direction towards Wallacia. Duncans Creek bisects the site on the eastern half of the site, also draining in a northerly direction towards the confluence with the Nepean River. The site is flood affected by:

- The Nepean River breaking the banks and discharging across the site, in an easterly direction.
- The Nepean River, back flooding up Duncans Creek from the downstream confluence, entering the site along the northerly boundary.
- Duncans Creek flooding due to the local Duncans Creek catchment.

The Nepean River and Duncans Creek flooding occur as different modes, with the former being a much slower response due to the large catchment area. Duncans Creek on the other hand will have a much faster catchment response and faster rising flood hydrographs.

Figure 3-1 Existing Site

3.2 Proposed Development

With reference to Figure 3-2, the proposed development comprising four distinct pad areas with Pad 1 located east of Duncan's Creek and pads 2 to 4 located west of Duncan's Creek. These pads raise ground levels above the 1 in 100 AEP Nepean River flood level and are approximately located at the locations of the elevated topographies on the existing site. Referring to Appendix A:

- Pad 1, will comprise inground, traditional burial plots, and vertical stacking cremation walls. Pad 1 will also be the location of the Chapel, Crematorium, access roads and gatehouse and function facilities.
- Pads 2 to 4 will comprise inground, traditional burial plots, , and vertical stacking cremation walls in some locations
- To offset the loss of floodplain storage and win fill for the pads, the centre of the site is depressed (via excavation). This area will house five circular Mausoleums. A larger Mausoleum is located between Pad 2 and Pad 3.
- All pads are bisected by internal access roads, located at the pad level, and connected by bridges.

The central depressed area of the site will also house gardens and internal walkways together with maintenance walking tracks.

The development proposes to substantially regrade the site to provide flood free pads and the central depressed area required as floodplain storage compensation. The pad areas however will only introduce a small increase in the impervious percentages as follows:

- The traditional burial plots will be located within grassed areas and will shed stormwater onto adjacent buffer strips. Buffer strips will route stormwater to overland swales. There may be a small increase in hardstand (approximately 10%) for headstones and other burial features.
- Proposed buildings will increase the impervious areas adjacent to Pad 1.
- Internal roads and walkways will increase hardstand area, however these are minor across the site.

Overall, the increase in impervious areas is considered to be small.

Figure 3-2 Proposed Site

4. Water Sensitive Urban Design: Stormwater - Risks and Opportunities

4.1 **Potential Stormwater Impacts**

In general, development of any kind could affect the hydrological cycle. This is due to changes in land use resulting in changes to stormwater discharge and pollution loads. The following key stormwater impacts considered are discussed in the context of the proposed development in the ensuing sections:

- Impacts to the water balance, in groundwater recharge.
- Stormwater pollution (by runoff and accidental spills entering the stormwater system).
- Stormwater peak flows and flood risk (onsite and offsite).
- Construction phase impacts, such as erosion and sedimentation.

4.1.1 Water Balance Impacts

As noted in Section 3.2, due to the proposed development the overall increase in impervious areas is considered to be small.

Table 4-1 Potential Water Balance Impacts

Potential Impact	Comment
Reduced rainfall infiltration to the soil results in decreased groundwater recharge, with potential impact on local base flows effecting streams, groundwater and water bodies (wetlands), particularly during dry weather.	The overall increase in impervious areas is considered small
Increased stormwater runoff volumes, which could affect downstream habitats. Sensitive habitats could be impacted in terms of flushing regimes (frequency, volume and rate), water quality, and wetting cycles	The overall increase in impervious areas is considered small. Some level of detention storage will need to be provided to manage increased runoff from roads and buildings, to prevent increases in stormwater runoff volumes.
Development and infrastructure on the site could lead to increased recharge due to removal of vegetation, over irrigation, and structural leakages.	The pervious nature of the site will be maintained under the proposed development.
Site compaction, fill, landform reshaping and underground structures could affect groundwater flow.	The pervious nature of the site will be maintained under the proposed development.

4.1.2 Stormwater Pollution

As part of the proposed development a stormwater system will be constructed to drain the site. This system will rely on swales and overland flow conveyance in preference to pit and pipe systems. Notwithstanding, the proposed development will still generate stormwater pollutants which will need to be managed.

Table 4-2 Potential Stormwater Pollution Impacts

Potential Impact	Comment
Runoff volume during regular rainfall events would entrain and mobilise pollutants (particularly first flush) and increase pollutant loads to the receiving environment	Stormwater pollutants under the proposed development will need to be managed as part of the proposed development.
The type of development and associated activities may introduce differing pollutant profiles; for example, vehicular traffic could increase hydrocarbon introduction	This will need to be managed as part of the proposed development.
The movement of vehicles, particularly during dry periods, could result in dust, and disturbed surfaces could provide a source of sediment, substantially contributing to the total suspended solids. In general, typical pollutants include litter, sediment, suspended solids, nutrients, hydrocarbons and toxicants. The generation of wind borne sediment/material by any of the operational activities could be deposited in, or transported to, the stormwater system.	This will need to be managed as part of the proposed development.
Accidental spills on unbunded areas of the site could discharge to the site stormwater system and the receiving environment. This could lead to groundwater contamination.	This will need to be managed as part of the proposed development.

4.1.3 Stormwater Peak Flows and Flood Risk

The flood risk associated with the Nepean River and Duncans Creek is documented in the separate Flooding Assessment report. Pads will be provided that raise the site above the Nepean River 1 in 100 AEP flood levels.

Table 4-3 Potential Stormwater Peak Flows and Flood Risk Impacts

Potential Impact	Comment
Onsite stormwater peak flows and volumes could be increased due to the increased impermeable surfaces. During moderate rainfall events, the resultant discharges can be highly erosive to stream beds banks and the receiving environment, thereby causing	The overall increase in impervious areas is considered small. Several detention basins will be located on the site to manage runoff and prevent increases in stormwater runoff peaks.

downstream degradation (for example of aquatic habitat).	
Increased peaks would raise onsite and offsite flood risk if not adequately managed. This could raise the flood risk (to life and property), compromise downstream infrastructure capacity and impact downstream environments leading to increased erosion and sedimentation.	The overall increase in impervious areas is considered small. Several detention basins will be located on the site to manage runoff and prevent increases in stormwater runoff peaks.
Flood risk at the site could also be impacted by local drainage channels that bisect or are in close proximity to the site, and that convey runoff from larger upstream catchment areas either through or past the site. Increased local flood levels could impact directly on the site leading risk to life and property and associated damages.	The overall increase in impervious areas is considered small. Several detention basins will be located on the site to manage runoff and prevent increases in stormwater runoff peaks.

4.1.4 Construction Phase Impacts

During the construction phase, clearing and earthmoving activities have the potential to impact on surface water quality near the plant site, especially during high rainfall events. The activities and aspects of the works that have potential to lead to erosion, sediment transport, siltation and contamination of natural waters include:

- Earthworks undertaken immediately prior to rainfall periods.
- Work areas that have not been stabilised and clearing of land in advance of construction works.
- Stripping of topsoil, particularly in advance of construction works.
- Bulk earthworks and construction of pavements.
- Washing of construction machinery.
- Works within drainage paths, including depressions.
- Stockpiling of excavated materials.
- Storage and transfer of oils, fuels, fertilisers and chemicals.
- Maintenance of plant and equipment.

The construction phase impacts will need to be managed for all construction activities.

4.2 Stormwater Drainage Concept Plan (SDCP) - Management Measures and Opportunities

Several measures are proposed to effectively manage stormwater and mitigate the impacts of the development. A Stormwater Drainage Concept Plan (SDCP) has been provided in Appendix B. In general, the plan proposes the management of stormwater as follows:

- Management of water balance.
 - Provision of stormwater detention strategies.
 - Rainwater harvesting.
 - Management and monitoring of onsite activities (irrigation).
- Management of stormwater pollution (by runoff entering the stormwater system).
 - Treatment of stormwater, targeting pollutants.
 - Bunding.
 - First flush systems and Gross Pollutant Traps.
- Management of stormwater peak flows and flood risk (onsite and local).
 - Onsite detention strategies.
 - Flood planning levels.
 - Flood evacuation.
- Management of construction phases Impacts.
 - Soil and Water Management planning for construction activities.
 - Implementation of erosion and sediment control strategies.
 - Ongoing monitoring and maintenance of erosion and sediment control strategies.

These strategies are incorporated into the proposed design and measures to monitor their effectiveness would need to be included in the construction and operation environmental management plans.

4.2.1 Site Discharge Points

The proposed development has been graded such that all stormwater on the site discharges to Duncan's Creek. To this end, the site is configured with two site discharge locations for onsite stormwater. The western discharge point, discharges water from the central depressed area of the site. The eastern discharge point, discharges stormwater from the Pad 1.

No stormwater from the road, buildings, burial grounds or other pad areas will discharge to the Nepean River. There will be a third discharge point to the Nepean River to discharge surface water captured within the central depressed area of the site, west of the Pad 2 and 3.

4.2.2 Water Balance

The impacts on the water balance will be mitigated and managed by:

- The potential for increased stormwater volumes discharging from the site will be managed by providing onsite detention storage. Each pad will have its own dedicated detention pond to throttle stormwater runoff.
- Rainwater harvesting for reuse can be sourced from roofed areas and from above ground stormwater runoff. Water reuse on site is dependent upon water quality and finding a suitable use with effective yet minimal water treatment measures. An optimum storage volume will maximise the water supply while minimising the number of overflows from the storage facility. Roof water can be directed to a single or several holding tanks after first

flush treatment. This can be reused as toilet flushing or managed irrigation of landscaped areas, provided these areas do not discharge to groundwater. Above ground stormwater can be directed to in ground storage facilities and reused.

• Management and monitoring of onsite activities and infrastructure will be essential in managing the water balance.

4.2.3 Stormwater Pollution

Stormwater quality and pollution for the proposed plant site will be effectively managed and mitigated by providing bio-retention basins co-located within the detention basins on each pad.

- The traditional burial plots will be located within grassed areas and will shed stormwater onto adjacent buffer strips. Buffer strips will route stormwater to overland swales. The buffer strips and swales will capture stormwater pollutants before routing flows to the bio-retention basins co-located within the detention basins on each pad.
- Roads and other hardstand areas will discharge to swales and raingardens. Pit and pipe stormwater systems will discharge to the bio-retention basins co-located within the detention basins on each pad. Prior to discharge to the basins, Gross Pollutant Traps will be provided to capture pollutants.
- Hardstand areas will be directed to Gross Pollutant Traps or first flush basins. This captured runoff can be reused on site or discharged to the stormwater system if of suitable quality.
- Site maintenance will be the key to managing stormwater pollution. This may require frequent sweeping and regular housekeeping practices. Regular maintenance of stormwater infrastructure, particularly water quality strategies will be essential.

4.2.4 Stormwater Peak Flows and Flood Risk

Onsite detention in the form of above ground basins will be used to mitigate the increase in peak flows from each pad areas. The stormwater quantity management will be achieved by:

- A general site grading towards detention basins or bio-retention basins co-located within the detention basins on each pad. Gross Pollutant Traps will be provided at the inlet to the detention basin.
- Roadside and other swales to convey surface runoff to detention basins or bio-retention basins co-located within the detention basins on each pad. In some areas, kerbs and gutters are proposed on internal roads collecting runoff via an internal stormwater pipe network.
- Adopting flood-planning levels, which ensure that floor areas are located 0.5m above any flood levels.
- Providing a flood evacuation plan/strategy for the site.

4.2.5 Construction Phases Impacts

Construction phase impacts can be managed by implementation of a Construction Phase Soil and Water Management Plan detailing stormwater management strategies in accordance with Landcom Soil and Construction, Managing Urban Stormwater (Landcom, 2004). These would include amongst others:

- General site practices and responsibilities.
- Material management practices.
- Stockpile practises.

- Topsoil practices.
- Erosion control practices (earth sediment basins, straw bales, sediment fences, turbidity barriers, stabilised site accesses, diversions and catch drains).

4.2.6 Monitoring Program

Monitoring should be undertaken to ensure that stormwater management measures are working effectively. Monitoring would rely primarily on visual inspections and sampling. Visual inspections should be undertaken of sediment basins, pits, diversion and catch drains and all other stormwater conveyance structures. An inspection log detailing the monitoring program should be kept.

5. Stormwater Simulations

In support of the discussion in Section 4.2, conceptual stormwater simulations have been undertaken as follows:

- DRAINS stormwater models were established to calculate the site discharge for developed conditions and to provide indicative sizing of onsite detention storage to throttle stormwater flows to existing conditions.
- MUSIC stormwater pollution models were established to calculate the required treatment area to manage stormwater pollutants from the proposed site.

The modelling is conceptual and indicative at this stage. However, the modelling provides some indication of stormwater management infrastructure sizes and confidence that the stormwater can be managed.

5.1 Onsite Detention Storage (DRAINS)

The hydrology of catchments draining to the onsite detention basin were compiled using a DRAINS hydrologic model, using Australian Rainfall and Runoff 2019 (ARR 2019) procedures. Inputs to the DRAINS model were:

- ARR 2019 rainfall: Intensity Frequency Duration (IFD) Design Rainfall Depth (mm) issued on 02 October 2019 for the requested coordinates: Latitude, -33.909000, Longitude, 150.673000.
- Catchment and catchment impervious areas: The four pad areas were configured within DRAINS assuming approximately 10% impervious for traditional burial plots and 100% impervious for internal roads, car parks and buildings.
- Initial and continuing losses: The loss values adopted were obtained from the ARR 2019 data hub, with a factor of 0.4 applied to continuing losses as per NSW specific guidelines. Initial losses were taken as probability neutral losses and continuing losses were assumed as 1.48 mm/hr. For impervious areas, initial losses of 0 mm, and continuing losses of 1 mm/hr.
- No onsite stormwater infrastructure was modelled. All detention basins were assumed to be 1.0 m deep, underlain by a 1m filtration layer and providing 0.5m freeboard to the basin crest.

Simulations were undertaken for the 1 in 5 AEP, 1 in 20 AEP and 1 in 100 AEP storm events, reporting the median storm event discharging to the two discharge locations on Duncans Creek. The results in the table below demonstrate the required onsite detention for each pad. It must however be acknowledged that these results are subject to the assumptions listed above. The preliminary recommended parameters are listed in Table 5-2. The results show that the increased impervious areas due to the development can be adequately managed by the provision of basins on each pad. The basin outlets are indicative, and the overall basin design needs to be optimised during detailed design, as can the basin depth. Since the pads are elevated with respect to the outlets, this is considered readily achievable.

Storm Event	Pad	Existing Flood Peak (m³/s)	Proposed Flood Peak (m³/s)	Detention Volume (m3)
1 in 5 AEP	1	0.46	0.46	730
	2	0.85	0.85	190
	3	0.65	0.60	110
	4	1.62	1.58	320
1 in 20 AEP	1	0.78	0.69	1030
	2	1.42	1.39	270
	3	1.08	1.07	120
	4	2.72	2.69	330
1 in 100 AEP	1	1.15	0.91	1620
	2	2.11	2.10	350
	3	1.6	1.55	125
	4	4.04	4.04	400

Table 5-1 Stormwater Onsite Detention Modelling Results

Table 5-2 Preliminary Basin Parameters

Pad	Detention Volume (m ³)	Basin depth (m)	Basin Outlet
1	1620	1	2x DN525
2	350	1	2x Box Culvert 0.9m x 0.6m
3	125	1	2x Box Culvert 0.6m x 0.6m
4	400	1	3x Box Culvert 1.2m x 0.6m

5.2 Stormwater Pollution (MUSIC)

The MUSIC model simulates the stormwater treatment train efficiency in reducing stormwater pollutants, when comparing to the developed site without any treatment to the site. Given the tradition burial sites will incorporate buffer strip and swales which will be effective in capturing stormwater pollutants, the bioretention areas would capture pollutants from the roads and other hardstand areas, such as buildings and carparking areas. The bioretention areas will need to be located so that roads and other hardstand areas, such as buildings and carparking areas, with a faster response time will be capture and treated before the remaining runoff from the burial plots arrive.

At a preliminary conceptual level, the MUSIC model was simulated to determine the bioretention treatment area required. This bio retention area would be co-located within the onsite detention basin on each pad. The bioretention area would comprise a 500 mm deep infiltration median, underlain with subsoil collector drainage pipes. The results of the simulations below, have been compared to pollution reduction performance targets based on the Liverpool City Council DCP (DCP 2008). The table below shows the bio-retention area required to manage the storm water pollution, to levels within the Liverpool City Council DCP (DCP 2008) performance target.

This treatment does not necessarily need to be in one location on the site but could be distributed across the site within raingardens and swales. The table shows that the stormwater pollutant reduction target levels can be achieved using bio-retention area targeting the capture of pollutants from the roads and other hardstand areas, such as buildings and carparking areas. The bio-retention areas can be co-located within detention basins or distributed across the site, with due consideration of contributing catchment areas.

Storm Event	Pollution Reduction Performance Targets (LCC DCP 2008)	Pollution Reduction Performance Achieved			
		Pad 1	Pad 2	Pad 3	Pad 4
	Bio-retention Treatment Area (m²)	320	106	40	140
Gross Pollutants	90%	100%	100%	100%	100%
Total Suspended Solids	85%	85%	85%	85%	85%
Total Phosphorous	65%	66%	67%	68%	67%
Total Nitrogen	45%	49%	48%	49%	49%

Table 5-3 Stormwater Pollution Modelling Results

6. Liverpool City Council Planning Control Assessment

The table below documents an assessment against key relevant Liverpool City Council stormwater planning controls, Section 6. The table shows that the proposed development can meet the requirement of these controls.

Table 6-1 Liverpool City Council Planning Control Assessment

Clause	Subject		
6.1	Easements	Easements	No new drainage easements required
	Stormwater Drainage Concept Plan (SDCP)	Stormwater Drainage Concept Plan (SDCP)	Discussed in Section 4.2 and provided in Appendix B
	Visual impact	All drainage structures and storage areas are to be designed to be visually unobtrusive and sympathetic with the environment	Water Sensitive Urban Design strategies adopted for stormwater management
	Surface flow Paths	• Surface flow paths, including the provision of an emergency overflow to cater for blockage of the system or flows more than the 100-year ARI storm flow must be provided.	Swales and other surface flow paths will be provided across the site
		• The flow route must be capable of carrying the flows generated by a 100-year ARI storm with a freeboard of 300mm to the adjacent habitable floor levels of the development site and adjoining properties.	Note, and there are no habitable areas on the site.
		• Development must not cause any adverse impact on adjoining or any other properties. This includes maintaining surface flow paths and not increasing water levels in these flow paths. Diverting flows from one catchment to another will not be permitted.	All stormwater will be managed on the site using Water Sensitive Urban Design strategies.
	Runoff from adjacent properties	Surface runoff from upstream properties shall not be allowed to enter OSD systems	OSD only manages onsite stormwater
	Floor and Ground Levels	All habitable floor levels are to be a minimum of 300mm and garage/non habitable floor levels to be a minimum of 150mm above the maximum design storage water surface level and flow path levels	There are no habitable areas on the site. Freeboard to non- habitable areas will be provided
	On-Site Stormwater Detention	On-Site Detention (OSD) systems provide temporary storage of stormwater runoff from developments and restrict discharge from the site at a rate which council's existing drainage system is capable of accommodating	Onsite detention will be provided for each pad, to manage roads, buildings and other hard stand areas resulting in increased impervious areas. Stormwater runoff modelling with DRAINS showed that the increased impervious areas due to the development can be adequately managed by the provision of basins on each pad.
6.2	Gravity drainage to a creek system	All buildings shall be setback a minimum of 40m from the top of the bank of a creek or river, subject limitations imposed by flooding or Foreshore Building Lines.	No buildings are within 40m of a creek.

Clause	Subject		
		Nutrient loading/effluent: Depending on the proposed use there may be a need to provide a permanent water quality basin to minimise any contaminated runoff.	Permanent bio-retention basis will be provided
		Erosion protection of creek banks: All outlet structures discharging to a creek system shall provide scour protection and energy dissipaters.	Erosion protection and energy dissipators will be provided.
6.3	Gross Pollutant Traps	• A minimum of one gross pollutant trap shall be required between the last downstream stormwater pit or pollution source and prior to discharge from the site.	Gross pollutant traps will be provided at the entry to the detention and bioretention basins, and elsewhere on site.
		• Gross pollutant traps shall not be located within the banks of watercourses or within riparian zones.	
		• Where a valve is required to isolate a site during a pollution spill, consideration shall be given to the location of the valve in relation to gross pollutant traps.	
		The design of the gross pollutant trap shall comply with Council's drainage design specifications.	
		• Details of the proposed gross pollutant trapping system, performance and compliance with Council's drainage design specifications shall be included in the Stormwater Drainage Concept Plan.	
6.4	Stormwater Runoff Quality	• The post development stormwater runoff quality shall be improved to achieve the following reduction targets when compared to predevelopment levels:	Stormwater quality modelling using MUSIC showed that the Liverpool City Council stormwater pollutant reduction target
		 45% reduction in the baseline annual pollutant load of total nitrogen (TN); 	levels can be achieved using bio-retention area targeting the capture of pollutants from the roads and other hardstand areas,
		 65% reduction in the baseline annual pollutant load of total phosphorus (TP); 	such as buildings and carparking areas. The bio-retention areas can be co-located within detention basins or distributed across
		 85% reduction in the baseline annual pollutant load of total suspended solids (TSS); and 	the site, with due consideration of contributing catchment areas.
		 90% reduction in the baseline annual pollutant load of litter and vegetation larger than 5mm, through provision of GPT. 	
		• In the case of areas were council has adopted a master plan or in Part 2 specifying water quality targets, the requirements of those documents shall be utilised in preference to the targets listed above.	
		• In the case of green field developments where Council has not adopted a master plan or is not included in Part 2 of the DCP specifying water quality targets the above targets shall be utilised by comparing post development water quality with that of a conventional stormwater drainage design without water quality treatment for an urbanised development.	
6.5	Stormwater Quality Management	• The post development stormwater runoff quality shall be improved to achieve the following reduction targets when compared to pre development levels:	Stormwater quality modelling using MUSIC showed that the Liverpool City Council stormwater pollutant reduction target levels can be achieved using bio-retention area targeting the
		 45% reduction in the baseline annual pollutant load of total nitrogen (TN); 	capture of pollutants from the roads and other hardstand areas,
		 65% reduction in the baseline annual pollutant load of total phosphorus (TP); 	such as buildings and carparking areas. The bio-retention areas

Clause	Subject	
		 85% reduction in the baseline annual pollutant load of total suspended solids (TSS); and can be co-located within detention basins or distributed across the site, with due consideration of contributing catchment areas.
		 90% reduction in the baseline annual pollutant load of litter and vegetation larger than 5mm, through provision of GPT.
		• Developments that this subsection applies to, including residential development of land area greater than 2,000m2, are to submit a stormwater quality management assessment demonstrating that necessary water quality improvement targets are achieved.

7. Summary and Conclusions

- Soukutsu Pty Ltd ATF Wallacia Trust (Soukutsu) engaged GHD Pty Ltd (GHD) to undertake a Water Sensitive Urban Design: Stormwater Assessment to provide the relevant documentation in support of a Development Application (DA) to Liverpool City Council. The subject of the DA is a proposed development comprising of the demolition of existing structures and construction of a cemetery, crematoria, community facilities, administration buildings, halls, chapels and other buildings and structures all associated with the operation of a cemetery with a garden, parkland and landscape setting. The proposal also includes internal roads, lakes and ponds. The proposed development is located on the site identified as 1290 Greendale Road, Wallacia and legally described as Lot 1 in DP 776645 in the Liverpool City Council Local Government Area (LGA).
- The existing site generally comprises paddocks with little to no hardstand areas. There are four general areas of elevated topography. The site west of Elevated Topography 2 and 3 drains to the Nepean River, while the catchment east of this location drains to Duncans Creek. The site is located within the Nepean River and Duncans Creek floodplains.
- The proposed development can be discretised into four distinct pad areas with Pad 1 located east of Duncan's Creek and pads 2 to 4 located west of Duncan's Creek. These pads raise ground levels above the 1 in 100 AEP Nepean River flood level and are approximately located at the locations of the elevated topographies on the existing site.
- Several measures have been implemented to effectively manage and mitigate the stormwater impacts of the proposed development, in the context of Water Sensitive Urban Design. These include measures to manage the water balance, management and monitoring of onsite activities, management of stormwater pollution, treatment of stormwater, targeting pollutants, management of stormwater peak flows and flood risk (onsite and local) and management of construction phases impacts.
- Stormwater runoff modelling with DRAINS showed that the increased impervious areas due to the development can be adequately managed by the provision of basins on each pad. Stormwater quality modelling using MUSIC showed that the Liverpool City Council stormwater pollutant reduction target levels can be achieved using bio-retention area targeting the capture of pollutants from the roads and other hardstand areas, such as buildings and carparking areas. The bio-retention areas can be co-located within detention basins or distributed across the site, with due consideration of contributing catchment areas.
- The assessment against key relevant Liverpool City Council stormwater planning controls shows that the proposed development can meet the requirement of these controls. It is thus considered that the proposed development can meet the requirements of the Liverpool City Council DCP 2008.

Appendices

Appendix A – Development Proposal

I. MASTERPLAN

mkd architects Marchitects and architects

PROPOSED MASTERPLAN

PAD

UNCAN'S RIVER

PAD 4 AREA = 92,810m2

新新新 Carlo Ha

CREMATION WALLS + VERTICAL STACKING SYSTEM + URN NICHES

MAUSOLEUM + VERTICAL STACKING SYSTEM + INDIVIDUAL BURIAL PLOTS + PRIVATE BURIAL AREAS + BCA CLASS 7B

IN-GROUND BURIAL PLOTS = 120,000 MAUSOLEUM PLOTS = 555,000 CREMATION WALL BURIAL PLOTS = 100,000

TOTAL BURIAL PLOTS = 775,000

Drawing Name: PROPOSED BURIAL TYPES LOCATION PLAN Drawing Scale @ A1: 1 : 2000

PROPOSED ACCESS

Drawing Number: DA-B4.04 Revision: A (NOV 2020)

mkd architects Marchitects and architects

 Project Address:
 Project Number:

 1290 GREENDALE PARK ROAD / WALLACIA
 20971

 Client:
 Project Status:

 SOUKUTSU PTY LTD
 DA

PROPOSED RESIDENTIAL SUBDIVISION 1290 GREENDALE ROAD, GREENPARK **CIVIL ENGINEERING WORKS** FOR DEVELOPMENT APPLICATION

COORDINATION NOTES

- RICAL CONSULTANTS DRAWINGS FOR ELECTRICAL RETICULATION SETOUT
- REFER LANDSCAPE ARCHITECTS DRAWINGS FOR SOIL STABILATION AND PLANTING DETAILS REFER SERVICE AUTHORITY FOR LOCATION AND CONSTRUCTION REQUIREMENTS APPLICABL TO EXISTING SERVICES.

GENERAL NOTES

- ALL WORK IS TO CONFORM TO THE CURRENT COUNCIL STANDARDS, DRAWINGS AND SPECIFICATIONS U.N.C WHERE CONNECTION IS TO BE MADE TO EXISTING CONSTRUCTION THE CONTRACTOR SHALL CONFIRM THE LOCATION AND LEVEL OF THIS CONSTRUCTION PRIOR TO COMMENCING WORK ON ANY CRITICAL SECTION. SUPERINTENDENT MAY VARY LEVELS AND GRADIENTS OF NEW WORKS TO ACHIEVE A SATISFACTORY CONNECTION
- LEVEL DATUM IS AHD.
- ALL DIMENSIONS ARE IN METRES U.N.O.
- PRIOR TO CONSTRUCTION THE CONTRACTOR WILL SATISFY HIMSELF OF THE CORRECT LOCATIONS OF ALL EXISTING SERVICES WHETHER INDICATED OR NOT ON THE PLANS ANY DAMAGE TO EXISTING SERVICES IS TO B
- PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL VERIFY BENCH MARK LEVELS AND ADVISE TH SUPERINTENDENT OF ANY DISCREPANCIE
- PRIOR TO CONSTRUCTION THE CONTRACTOR IS TO CONFIRM WITH THE SUPERINTENDENT THE FOLLOWING 7.A. ALL INSPECTION HOLD POINTS, AND
- 7.B. ALL COMPLIANCE TESTING REQUIREMENTS ANY WORK ON EXISTING SERVICES THAT REQUIRE RELOCATION BY AUTHORITIES SHALL BE CARRIED OUT BY THE RELEVANT AUTHORITY, BUT WITHIN TERMS OF THE CONTRACT, AND SHA CONTRACTOR
- COUNCIL STANDARDS AND SUBMIT THE DETAILS SHOWN ON A PLAN TO THE SUPERINTENDENT
- 10. ALL VERGES ARE TO BE FULLY TURFED WITH COUCH REFER TO LANDSCAPE ARCHITECTS PLANS FOR DETAILS.

EARTHWORKS NOTES

- 1. EARTHWORKS NOTES ARE TO BE READ IN CONJUNCTION WITH THE GENERAL AND COORDINATION NOTES .
- 2. EARTHWORKS SHALL BE CARRIED OUT IN ACCORDANCE WITH PROCEDURES SET DOWN IN AS3798 'GUIDELINES ON EARTHWORKS FOR COMMERCIAL AND RESIDENTIAL DEVELOPMENTS'.
- 3. BULK EARTHWORKS INCLUDING CLEARING, FILLING AND TESTING, ARE TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT COUNCIL STANDARDS, DRAWINGS AND SPECIFICATIONS. COUNCIL STANDARDS SUPERSEDE ANY NOTES OR SPECIFICATIONS WRITTEN ON THE DESIGN DRAWINGS.
- 4. BULK EARTHWORKS LEVELS SHALL BE DETERMINED RELATIVE TO THE FINISHED SURFACE LEVELS. REFER ARCHITECTURAL DRAWINGS FOR SLAB LEVELS, TO THE STRUCTURAL ENGINEERS DRAWINGS FOR BUILDING AND PATH SLAB THICKNESS AND TO THE CIVIL ENGINEERS DRAWINGS FOR EXTERNAL FINISHED SURFACE LEVELS AND EXTERNAL PAVEMENT THICKNESSES
- 5. TOPSOIL SHALL BE STOCKPILED AS DIRECTED BY THE SUPERINTENDENT ON SITE. 6. PRIOR TO PLACEMENT OF ANY FILLING ALL TOPSOIL AND ORGANIC MATERIAL IS TO BE REMOVED AND THE SUBGRADE SHALL BE UNIFORMLY COMPACTED TO THE MINIMUM DRY DENSITY RATIOS SHOWN IN NOTE 10. ANY SOFT SPOTS REVEALED BY COMPACTION SHALL BE REMOVED AS DIRECTED BY THE SUPERINTENDENT AND
- BACKFILLED WITH COMPACTED SELECT FILL. 7. MOISTURE CONTENT OF COMPACTED FILL SHOULD BE MAINTAINED WITHIN 2% OF OPTIMUM MOISTURE CONTENT. 8. FILL SHALL BE COMPACTED IN MAXIMUM 200mm THICK LAYERS (LOOSE THICKNESS) TO THE FOLLOWING MINIMUM DRY DENSITY RATIOS (STANDARD COMPACTION A.S.1289.5-1).
- 8.A. UPPER 0.3m OF PAVEMENT SUBGRADE = 100%;
- 8.B. UNDER BUILDINGS = 98%;
- 8.C. GENERAL FILL = 95%.
- 9. ALL FILL MATERIAL PLACED ON THE SITE SHALL COMPRISE ONLY NATURAL EARTH AND ROCK, AND IS TO BE FREE OF CONTAMINANTS (AS DEFINED BY SECTION 11 OF THE ENVIRONMENTAL PROTECTION ACT 1994), NOXIOUS, HAZARDOUS, DELETERIOUS AND ORGANIC MATERIALS. NO DEMOLITION MATERIAL IS TO BE USED. SUITABLE FILL MATERIAL IS DEEMED TO COMPLY WITH THE REQUIREMENTS OF CLAUSE 4.3 OF AS3798, 'GUIDELINES ON EARTHWORKS FOR COMMERCIAL AND RESIDENTIAL DEVELOPMENTS'.

10. IMPORTED FILL SHALL COMPLY WITH THE FOLLOWING: 10.A. SOAKED CBR = MINIMUM OF 15%:

- 10.B. LIQUID LIMIT = 30% MAX;
- 10.C. PLASTICITY INDEX = 15% MAX;
- 10.D. MAXIMUM AGGREGATE SIZE = 75mm;
- 10.E. PASSING 0.075mm SIEVE = 30% MAX;
- 10.F. SHRINK/SWELL INDEX = 1.0% MAX.
- 11. THE CONTRACTOR IS TO ENGAGE, AT THEIR EXPENSE, AN APPROVED NATA REGISTERED LABORATORY TO CARRY OUT SITE CONTROL TO 'LEVEL 1' STANDARD AS SET OUT IN APPENDIX B OF AS3798-2007 'GUIDELINES ON EARTHWORKS FOR COMMERCIAL AND RESIDENTIAL DEVELOPMENTS' AND PROVIDE A 'LEVEL 1' REPORT ON COMPLETION OF EARTHWORKS.

	L
Botanica Nurseries	
Pty Limited	K
	A
	1

DRAINAGE NOTES

- NOTES.
- 2. CONTRACTOR IS TO CHECK THAT THE PROPOSED PIPE WORKS DO NOT CLASH WITH EXISTING SERVICES PRIOR TO ANY TRENCH EXCAVATION. THE CONTRACTOR SHALL NOTIFY THE ENGINEER IF ANY CLASHES ARE FOUND FOR ADVICE ON ANY DESIGN REQUIREMENTS.
- 3. STRUCTURES HAVE BEEN DESIGNED FOR OPERATIONAL LOADS ONLY. THE CONTRACTOR IS RESPONSIBLE FOR THE ASSESSMENT OF CONSTRUCTION LOADS AND PROVISION OF ANY TEMPORARY BRACING, PROPPING, ETC. REQUIRED DURING CONSTRUCTION. STRUCTURES SHALL
- BE MAINTAINED IN A STABLE CONDITION AND NO PART SHALL BE OVERSTRESSED. 4. ALL TRENCH EXCAVATIONS AND CONSTRUCTION IS TO BE IN ACCORDANCE WITH THE WORKPLACE HEALTH AND SAFETY 1989 AS AMENDED AND THE MINE REGULATIONS ACT
- 5. ALL TRENCHES IN TRAFFICABLE AND NON TRAFFICABLE ZONES SHALL BE BACKFILLED TO DENSITY RATIOS. FREQUENCIES AND LAYER INTERVALS IN ACCORANCE WITH THE CURRENT COUNCIL STANDARDS. ALL TEST RESULTS SHALL FORWARDED TO THE SUPERINTENDENT AS THEY BECOME AVAILABLE
- 6. ALL PRECAST CONCRETE PIPES ARE TO BE MANUFACTURED IN ACCORDANCE WITH AS 4058. STORMWATER PIPES SHALL BE TO FOLLOWING CLASSES U.N.O.
- 6.A. REINFORCED CONCRETE PIPES (RCP) = CLASS 2; 6.B. FIBRE REINFORCED PIPES (FRC) = CLASS 2;
- 6.C. uPVC = CLASS 'SEH'.
- 7. ALL RCP PIPES SHALL HAVE THE FOLLOWING JOINTS U.N.O. 7.A. RCP <=600 DIA = RUBBER RING JOINTED (RRJ). 7.B. RCP >600 DIA = FLUSH JOINTED (FJ);
- 8. ROOFWATER PIPES SHALL BE uPVC PIPES CLASS 'SH' U.N.O.
- 9. REFER TO STORMWATER LONGITUDINAL SECTIONS FOR ALL STRUCTURE TYPES, SIZES, LEVELS AND GRATE TYPES. GRATES SHALL BE TRAFFICABLE CLASS 'D' U.N.O. 10. MANHOLE AND FIELD INLET ACCESS SHALL BE INSTALLED AS DESCRIBED BELOW IN ACCORDANCE
- WITH AS1657: 10.A. GULLY/FIELD INLETS >1.35m DEPTH: STEP IRONS;
- 10.B. MANHOLES 0.850m-3.0m DEPTH: STEP IRONS; 10.C. MANHOLES >3.0m DEPTH: FIXED ACCESS LADDER. 11. TEST CERTIFICATES AND MATERIAL CERTIFICATION DOCUMENTATION IS REQUIRED FOR ALL PIPES,
- FITTINGS, BOX CULVERTS AND OTHER PRECAST CONCRETE PRODUCTS. 12. ALL STORMWATER SETOUT IS TO CENTRE OF STRUCTURE U.N.O. 13. FOR PIPE BEDDING DETAILS (MODIFIED FOR CONSTRUCTION LOADS)
- REFER TO UMB15123.CIV.CC 300

					Certification By
					11
					A
					NI
Α	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	-The
Issue	Description	Date	Design	Manager	1
-1 0	1cm at full size 10cm			20cm	

COORDINATION NOTES.

EFFICIENT OPERATION.

3.B. STRIPPING TOPSOIL

3.C. BULK EARTHWORKS;

INSPECTION BY THE SUPERINTENDENT.

ACCEPTABLE METHODS INCLUDE:

10.C. CONSTRUCTING WIND BREAKS;

10.A. WATERING;

10.D. MULCHING.

LOCALITY PLAN N.T.S

1. DRAINAGE NOTES ARE TO BE READ IN CONJUNTION WITH THE GENERAL AND COORDINATION

"OPEN" FOR A PERIOD OF GREATER THEN ONE (1) MONTH.

10.B. PROMOTING VEGETATION IN WIND EROSION PRONE AREAS;

EROSION AND SEDIMENT CONTROL NOTES

3.A. CONSTRUCTION OF EROSION AND SEDIMENT DEVICES;

3.D. SERVICES, BUILDING, PAVEMENT AND ROAD CONSTRUCTION;

3.E. LANDSCAPED AREAS TO BE TOPSOILED, TURFED, MULCHED OR PLANTED.

THROUGHOUT CONSTRUCTION TO THE SATISFACTION OF THE SUPERINTENDENT.

1. EROSION & SEDIMENT CONTROL (ESC) NOTES ARE TO BE READ IN CONJUNCTION WITH THE GENERAL AND

SUPERINTENDENT. THE CONTRACTOR IS TO FOLLOW THE CONSTRUCTION PHASE AS OUTLINED:

5. THE CONTRACTOR SHALL PROVIDE SILT FENCES IMMEDIATELY DOWNSTREAM OF ANY SOIL STOCKPILES.

6. BOTH TEMPORARY AND PERMANENT ESC MEASURES SHALL BE MAINTAINED AT A SUITABLE LEVEL/CONDITION

9. ALL ESC MEASURES MUST SUIT THE PREVAILING CLIMATE/WEATHER CONDITIONS AT THE TIME OF CONSTRUCTION.

10. THE CONTRACTOR IS TO ENSURE THE SUPPRESSION OF DUST AT ALL TIMES DURING THE CONSTRUCTION AND

3. CONSTRUCTION OF ALL SEDIMENT CONTROL MANAGEMENT DEVICES SHALL BE TO THE SATISFACTION OF THE

14. REFER DRAWING AS ACE171359 - 100 TO 101 FOR EROSION AND SEDIMENT CONTROL DETAILS.

AUSTRALIAN CONSULTING AUSTRALIAN | PTY LTD - A.C.N. 084 059 941 CONSULTING LEVEL 4, 470 CHURCH STREET NORTH PARRAMATTA NSW 2150 PH: (02) 9763 I500 FX: (02) 9763 I5I5 ENGINEERS. EMAIL: info@aceeng.com.au

CONSTRUCTION. REFER WATER QUALITY MONITORING TABLE FOR DETAILS. 13. ALL DISTURBED GROUND IS TO BE GRASS SEEDED TO PREVENT EROSION IF THE DISTURBED GROUND IS TO BE LEFT

AREA AND ARE RESTRICTED FROM CROSSING OR DISTURBING AREAS NOT SUBJECT TO CONSTRUCTION.

ACE ACE ACE ACE EAR ACE ACE ACE ROA ACE EXTE ACE ACE

G No.	DESCRIPTION	REV		
RAL				
71359.CIV.CC.000	COVER SHEET AND LOCALITY PLAN	A		
71359.CIV.CC.001	EXISTING SERVICES AND DEMOLITION PLAN	A		
SION AND SEDIMENT				
71359.CIV.CC.100	EROSION AND SEDIMENT CONTROL PLAN	A		
71359.CIV.CC.101 SEDIMENT AND EROSION CONTROL DETAILS SHEET 1 OF 3				
71359.CIV.CC.102	SEDIMENT AND EROSION CONTROL DETAILS SHEET 2 OF 3	A		
71359.CIV.CC.103	SEDIMENT AND EROSION CONTROL DETAILS SHEET 3 OF 3	A		
HWORKS				
71359.CIV.CC.200	BULK EARTHWORKS PLAN	A		
71359.CIV.CC.201	BULK EARTHWORKS SECTIONS SHEET 1 OF 2	A		
71359.CIV.CC.202	BULK EARTHWORKS SECTIONS SHEET 2 OF 2	A		
WORKS				
71359.CIV.CC.300	OVERALL ROADWORKS AND DRAINAGE LAYOUT PLAN	A		
71359.CIV.CC.301	ROADWORKS AND DRAINAGE LAYOUT PLAN SHEET 1 OF 4	A		
71359.CIV.CC.302	ROADWORKS AND DRAINAGE LAYOUT PLAN SHEET 2 OF 4	A		
71359.CIV.CC.303	ROADWORKS AND DRAINAGE LAYOUT PLAN SHEET 3 OF 4	А		
71359.CIV.CC.304	ROADWORKS AND DRAINAGE LAYOUT PLAN SHEET 4 OF 4	А		
71359.CIV.CC.305	TYPICAL CROSS SECTION AND SWALE SECTION	А		
71359.CIV.CC.310	ROAD 1 LONGITUDINAL SECTIONS SHEET 1 OF 2	A		
71359.CIV.CC.311	ROAD 1 LONGITUDINAL SECTIONS SHEET 2 OF 2	A		
71359.CIV.CC.312	ROAD 2 LONGITUDINAL SECTIONS SHEET 1 OF 2	A		
71359.CIV.CC.313	ROAD 2 LONGITUDINAL SECTIONS SHEET 2 OF 2	A		
71359.CIV.CC.314	ROAD 2 LONGITUDINAL SECTIONS SHEET 3 OF 3	A		
71359.CIV.CC.320	ROAD 1 CROSS SECTIONS SHEET 1 OF 2	A		
71359.CIV.CC.321	ROAD 1 CROSS SECTIONS SHEET 2 OF 2	A		
71359.CIV.CC.322	ROAD 2 CROSS SECTIONS SHEET 1 OF 4	А		
71359.CIV.CC.323	ROAD 2 CROSS SECTIONS SHEET 2 OF 4	А		
71359.CIV.CC.324	ROAD 2 CROSS SECTIONS SHEET 3 OF 4	A		
71359.CIV.CC.325	ROAD 2 CROSS SECTIONS SHEET 4 OF 4	А		
INING WALL				
71359.CIV.CC.400	RETAINING WALL TYPICAL CROSS SECTION	А		
RNAL WORKS PACK	AGE			
71359.CIV.CC.700	GREENDALE ROAD INTERSECTION LAYOUT PLAN SHEET 1 OF 2	А		
71359.CIV.CC.701	GREENDALE ROAD INTERSECTION LAYOUT PLAN SHEET 2 OF 2	А		

2. ALL ESC MEASURES SHALL BE IN ACCORDANCE CURRENT COUNCIL STANDARDS, DRAWINGS AND SPECIFICATIONS U.N.O.

4. THE CONTRACTOR IS TO PROVIDE A CONSTRUCTION TRAFFIC SHAKEDOWN DEVICE AT ALL RELEVANT POINTS OF EXIT

FROM THE SITE. THE CONTRACTOR SHALL CLEAN OUT AND MAINTAIN THE SHAKEDOWN DEVICE REGULARLY TO ENSURE

7. ALL TEMPORARY ESC MEASURES SHALL BE MAINTAINED AND FULLY OPERATIONAL DURING THE CONSTRUCTION AND MAINTENANCE PERIOD, AND ARE TO BE REMOVED AFTER THE SATISFACTORY COMPLETION OF AN 'OFF MAINTENANCE'

8. ALL ESC MEASURES ARE TO BE INSPECTED AT LEAST DAILY, PRIOR TO EXPECTED RAINFALL AND AFTER RAINFALL. ANY DAMAGE OR EXCESS EROSION/SEDIMENT IS TO BE REPAIRED/MANAGED AS REQUIRED TO MAINTAIN CONTROL DEVICES.

MAINTENANCE PERIOD OF THE DEVELOPMENT. ENVIRONMENTAL HARM AND NUISANCE FROM DUST IS TO BE PREVENTED.

11. THE CONTRACTORS VEHICLES & PLANT SHALL NOT OPERATE OUTSIDE THE LIMITS OF THE IMMEDIATE CONSTRUCTION

12. ANY WATER TRAPPED WITHIN THE TEMPORARY SEDIMENT BASIN IS TO BE REGULARLY TESTED DURING THE COURSE OF

DISCLAIMER

ALL INFRASTRUCTURE INFORMATION (MAINS, SEWER, PIPES ETC.) IS DERIVED FROM COUNCIL'S "AS CONSTRUCTED" RECORDS. EVERY EFFORT WAS MADE TO ENSURE ACCURACY OF THESE RECORDS WHEN COMPILED. NO WARRANTY IS GIVEN TO CURRENCY OF DEPTHS AND LEVELS DUE TO THE POSSIBILITY OF SUBSEQUENT ALTERATION OF LEVELS THROUGH FILLING OR EXCAVATION. USERS OF THE INFORMATION IN THIS DRAWING/DESIGN SHOULD TAKE ALL REASONABLE STEPS TO VERIFY THE RELEVANT INFORMATION BEFORE COMMENCING EXCAVATING OR CONSTRUCTION WORK.

UMBRELLA CIVIL CONSULTING ENGINEERS TAKE NO RESPONSIBILITY FOR APPARENT ERRORS OR INACCURACIES IN THE INFORMATION PROVIDED.

IT IS THE CONTRACTOR RESPONSIBILITY TO CONTACT "DIAL BEFORE YOU DIG" OR PHONE 1100 FOR THE LOCATION OF EXISTING PUBLIC UTILITIES, PRIOR TO EXCAVATION.

DANGER : LOCATION OF ALL EXISTING UNDERGROUND SERVICES SHOWN ARE APPROXIMATE AS TAKEN OFF DBYD INFO. EXTREME CAUTION TO BE

EXERCISED WHEN WORKING IN THE VICINITY OF AND AROUND THESE SERVICES. PLEASE CALL THE RELEVANT AUTHORITIES TWO DAYS PRIOR TO CONSTRUCTION FOR A MORE EXACT LOCATION OF THE EXISTING SERVICES

NOT FOR CONSTRUCTION

1290 GREENDALE ROAD, GREENPARK PUBLIC DOMAIN WORKS **CIVIL ENGINEERING PLANS DEVELOPMENT APPLICATION**

GENERAL NOTES, LOCALITY PLAN AND DRAWING SCHEDULE

Scale A1 Project No. N.T.S.

200597

A

Kix

COORDINATION NOTES

- 1. REFER ELECTRICAL CONSULTANTS DRAWINGS FOR ELECTRICAL RETICULATION SETOUT.
- 2. REFER LANDSCAPE ARCHITECTS DRAWINGS FOR SOIL STABILATION AND PLANTING DETAILS REFER SERVICE AUTHORITY FOR LOCATION AND CONSTRUCTION REQUIREMENTS APPLICABLE TO EXISTING SERVICES. 3.

GENERAL NOTES

- 1. ALL WORK IS TO CONFORM TO BLACKTOWN CITY COUNCIL'S ENGINEERING GUIDE FOR DEVELOPMENT CIVIL WORKS SPECIFICATIONS.
- WHERE CONNECTION IS TO BE MADE TO EXISTING CONSTRUCTION THE CONTRACTOR SHALL CONFIRM THE 2. LOCATION AND LEVEL OF THIS CONSTRUCTION PRIOR TO COMMENCING WORK ON ANY CRITICAL SECTION. THE SUPERINTENDENT MAY VARY LEVELS AND GRADIENTS OF NEW WORKS TO ACHIEVE A SATISFACTORY CONNECTION.
- 3. LEVEL DATUM IS AHD.
- 4. ALL DIMENSIONS ARE IN METRES U.N.O. 5 PRIOR TO CONSTRUCTION THE CONTRACTOR WILL SATISFY HIMSELF OF THE CORRECT LOCATIONS OF ALL EXISTING SERVICES WHETHER INDICATED OR NOT ON THE PLANS. ANY DAMAGE TO EXISTING SERVICES IS TO BE RECTIFIED AT THE CONTRACTORS EXPENSE
- PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL VERIFY BENCH MARK LEVELS AND ADVISE THE 6. SUPERINTENDENT OF ANY DISCREPANCIES.
- PRIOR TO CONSTRUCTION THE CONTRACTOR IS TO CONFIRM WITH THE SUPERINTENDENT THE FOLLOWING: 7. 7.A. ALL INSPECTION HOLD POINTS, AND;
 - 7.B. ALL COMPLIANCE TESTING REQUIREMENTS.
- ANY WORK ON EXISTING SERVICES THAT REQUIRE RELOCATION BY AUTHORITIES SHALL BE CARRIED OUT BY THE 8 RELEVANT AUTHORITY, BUT WITHIN TERMS OF THE CONTRACT, AND SHALL BE CO-ORDINATED BY THE CONTRACTOR.
- AT COMPLETION OF CONSTRUCTION THE CONTRACTOR SHALL ARRANGE FOR AN INDEPENDENT LICENSED SURVEYOR TO CARRY OUT A "WORKS AS CONSTRUCTED" SURVEY IN ACCORDANCE WITH THE CURRENT COUNCIL STANDARDS AND SUBMIT THE DETAILS SHOWN ON A PLAN TO THE SUPERINTENDENT.
- 10. ALL VERGES ARE TO BE FULLY TURFED WITH COUCH REFER TO LANDSCAPE ARCHITECTS PLANS FOR DETAILS.

EROSION AND SEDIMENT CONTROL NOTES

- 1. EROSION & SEDIMENT CONTROL (ESC) NOTES ARE TO BE READ IN CONJUNCTION WITH THE GENERAL AND COORDINATION NOTES.
- 2. ALL ESC MEASURES SHALL BE IN ACCORDANCE CURRENT COUNCIL STANDARDS, DRAWINGS AND SPECIFICATIONS U.N.O. 3. CONSTRUCTION OF ALL SEDIMENT CONTROL MANAGEMENT DEVICES SHALL BE TO THE SATISFACTION OF THE
- SUPERINTENDENT. THE CONTRACTOR IS TO FOLLOW THE CONSTRUCTION PHASE AS OUTLINED:
- 3.A. CONSTRUCTION OF EROSION AND SEDIMENT DEVICES; 3.B. STRIPPING TOPSOIL;
- 3.C. BULK EARTHWORKS;
- 3.D. SERVICES, BUILDING, PAVEMENT AND ROAD CONSTRUCTION
- 3.E. LANDSCAPED AREAS TO BE TOPSOILED, TURFED, MULCHED OR PLANTED.
- 4. THE CONTRACTOR IS TO PROVIDE A CONSTRUCTION TRAFFIC SHAKEDOWN DEVICE AT ALL RELEVANT POINTS OF EXIT FROM THE SITE. THE CONTRACTOR SHALL CLEAN OUT AND MAINTAIN THE SHAKEDOWN DEVICE REGULARLY TO ENSURE EFFICIENT OPERATION.
- 5. THE CONTRACTOR SHALL PROVIDE SILT FENCES IMMEDIATELY DOWNSTREAM OF ANY SOIL STOCKPILES. 6. BOTH TEMPORARY AND PERMANENT ESC MEASURES SHALL BE MAINTAINED AT A SUITABLE LEVEL/CONDITION
- THROUGHOUT CONSTRUCTION TO THE SATISFACTION OF THE SUPERINTENDENT
- 7. ALL TEMPORARY ESC MEASURES SHALL BE MAINTAINED AND FULLY OPERATIONAL DURING THE CONSTRUCTION AND MAINTENANCE PERIOD, AND ARE TO BE REMOVED AFTER THE SATISFACTORY COMPLETION OF AN 'OFF MAINTENANCE' INSPECTION BY THE SUPERINTENDENT.
- 8. ALL ESC MEASURES ARE TO BE INSPECTED AT LEAST DAILY, PRIOR TO EXPECTED RAINFALL AND AFTER RAINFALL. ANY DAMAGE OR EXCESS EROSION/SEDIMENT IS TO BE REPAIRED/MANAGED AS REQUIRED TO MAINTAIN CONTROL DEVICES.
- 9. ALL ESC MEASURES MUST SUIT THE PREVAILING CLIMATE/WEATHER CONDITIONS AT THE TIME OF CONSTRUCTION.
- 10. THE CONTRACTOR IS TO ENSURE THE SUPPRESSION OF DUST AT ALL TIMES DURING THE CONSTRUCTION AND MAINTENANCE PERIOD OF THE DEVELOPMENT. ENVIRONMENTAL HARM AND NUISANCE FROM DUST IS TO BE PREVENTED. ACCEPTABLE METHODS INCLUDE:
- 10.A. WATERING;
- 10.B. PROMOTING VEGETATION IN WIND EROSION PRONE AREAS;
- 10.C. CONSTRUCTING WIND BREAKS;
- 10.D. MULCHING. 11. THE CONTRACTORS VEHICLES & PLANT SHALL NOT OPERATE OUTSIDE THE LIMITS OF THE IMMEDIATE CONSTRUCTION AREA AND ARE RESTRICTED FROM CROSSING OR DISTURBING AREAS NOT SUBJECT TO CONSTRUCTION.
- 12. ANY WATER TRAPPED WITHIN THE TEMPORARY SEDIMENT BASIN IS TO BE REGULARLY TESTED DURING THE COURSE OF CONSTRUCTION. REFER WATER QUALITY MONITORING TABLE FOR DETAILS.
- 13. ALL DISTURBED GROUND IS TO BE GRASS SEEDED TO PREVENT EROSION IF THE DISTURBED GROUND IS TO BE LEFT "OPEN" FOR A PERIOD OF GREATER THEN ONE (1) MONTH.
- 14.REFER DRAWING AS ACE177022.CIV.CC 100 TO 101 FOR EROSION AND SEDIMENT CONTROL DETAILS.

50-100mm ROCK PLACED OVER GEOFABRIC ACROSS FULL WEIR AND SIDE BATTERS	— TOP OF WALL

SPILLWAY PROTECTION TYPICAL DETAIL

					Certification By:	Architect
					- and	
					VI MADONE)	IIIKU
А	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	Hot wind	
Issue	Description	Date	Design	Manager	1 Stint	
1 0	1cm at full size 10cm			20cm	1 202	

Vs = 10*R _{(Y%,}	_{5-day)} *C _V *A
ERE,	
Vs = VOLUME	E OF SETTLING ZONE (m ³)
R _(Y%,5-day) = Y%, 5-D/	AY RAINFALL DEPTH (mm)
C _V = VOLUME	TRIC RUNOFF COEFFICIENT
A = EFFECT	IVE CATCHMENT SURFACR AREA CONNECTED TO THE BASIN (ha)
$R_{(Y\%, 5-day)} = 25$	mm
$C_{V} = 0.5$	
A = 1.41	ha
ZONE VOLUME = 176.25	m ³
RAGE VOLUME = 50% S	ETTLING ZONE VOLUME = 88.1 m ³
BASIN VOLUME = 264.375	m ³

80.41	<u> </u>
SCAL	.E

					Certification By:	Architect
					(Alo	
					VI. Mithan	mkd
А	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	Here	
Issue	Description	Date	Design	Manager	1 State	
-1 0	1cm at full size 10cm			20cm		

<i>-</i>		
	KO	
	-32.0-	
	-32.0-	

Issue Description

					Certification By:	Architect
					(N L	
					~ Unth.)	mld
					11 Matter	IIIKU
Α	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	Hornand	_
Issue	Description	Date	Design	Manager	1 Stin J	
-1 0	10cm			20cm	. ~~	

					Certification By:	Architect
					(N L	
					and All	
					VI MADONE)	INKO
Α	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	the training	
Issue	Description	Date	Design	Manager	1 Stint	
-1 C	1 cm at full size 10 cm			20cm		

Scale

NOT FOR CONSTRUCTION

Project 1290 GREENDALE ROAD, GREENPARK PUBLIC DOMAIN WORKS CIVIL ENGINEERING PLANS	Drawing Title BULK E SHEET	ARTHWORKS SI 2 OF 2	ECTIONS	
DEVELOPMENT APPLICATION	Scale A1 1:1000	Project No. 200597	Dwg. No. 202	Issue A

					(Aller)	mk
Α	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	the trank	
Issue	Description	Date	Design	Manager	1 State 1	
-1 0	1cm at full size			20cm		

					Certification By:	Architect
Α	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	Horning)	
Issue	Description	Date	Design	Manager	1 Stin 1	
-1 0	1cm at full size 10cm			20cm	, w	

	4			.816				16.414		SIGN RFACE LE	VEL	.337				.784	EXISTIN	NG							76				•		
	Р RI 38 87		CUT PAD	VIP RL 43					¥.			VIP RL 44	FILL PA	AD		VIP RL 42.	SURFA	CE LEVEL			9 RL 35.787				1P RL 35.0	CUT PAD			7 KL 34.013		
		· · · · · · · · · · · · · · · · · · · ·														+ + -					¥				> 						
DATUM RL 24.000					_	_														_				_				_ ′			
HORIZONTAL CURVES	<	R61.56	F	R45.62		R-78.22	~	<	R-72.89		><											R44	.5	R4	4.41			R3529	.23	F	<u>ک-100</u>
	K2	L55.17		L31.36		L53.49	K	6.03	L54.25			K40.85		L300).66	K23.68				L300.66	K30 76	L2.	31	L74	4.26		L50.68	L29.3	35 L	_16.12 L	23.37 L37.9 Z
VERTICAL CURVES	$\begin{array}{c c} \bullet \bullet \\ L4.5 \\ & \\ & \\ \end{array}$	5 L	L22.87	L60		L7.6		L50	L1	12.71		L60		L29.66	<	L75		 L49.3	L49.3	><	L120			>< L22.19	><		L101.17	>	<	L94.39	
VERTICAL GRADES	< -3% L17	<	7.6%	><		4.2%		><		-3.1% L67.71		><		-1.6% L97.16			-4.8% L146.8			4.8% L146.8	><	-0. L82	9%		><		-1.1% L101.17	>	<	-0.7% L134.39	
DESIGN SURFACE LEVEL	39.384 39.249 39.142 39.204	39.819	41.548	43.560	44.504	45.061 45.376	45.918 45.63	45.973	45.647	45.257	44.918 44.763	44.447	43.857	43.383	42 780	42.487		40.996		38.647 38.489 38.489	36.372	35.532 26.407	35.457	35.268	35.076	34.733	34.434	34.200 34.013	33.930	33.813	33.643 33.578
FILL PAD				43.573 43.829	44.253	44.785 44.936	44.837 44 807	44.785	44.659	44.582	44.514 44.480	44.404	44.320	43.896	43 138	42.784		41.319 41.224		39.482											
CUT PAD			34.921 35.046																		37.888	35.815 25 eno	35.802	35.699	35.391	35.111	34.798	34.554 34.357	34.229	34.050	33.838 33.817
EXISTING	39.384 39.420 39.219 39.139	39.105	39.160 39.162	39.167 39.166	39.097	39.030 39.007	38.973 38.031	38.908	38.763	38.639	38.524 38.455	38.250	37.868	37.747	38 154	38.359		38.676 38.666		38.549 38.523	37.947	38.108	38.164	38.256	38.119	37.816	37.771	37.909 37.764	37.591	37.528	37.397
CHAINAGE	0 4.503 11.605 17.003	29.503	52.375 55.174	82.375 86.535	100	112.375 119.971	140.025 144 071	144.971	169.971	182.683	194.278 200	212.683	242.683	272.344	QOE	309.844		347.344 350		396.646	456.646	494.937	500 500	516.646	538.835	571.507	600	622.191 640	651.539	667.654	691.024 700

					Certification By:	Architect
					(Alle	m
A	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	Holmow)	
Issue	Description	Date	Design	Manager	1 Stin J	
-1 0	1cm at full size 10cm			20cm		

nkd architects

60 m 40 20 1 SCALE 1:1000 @ A1

Scale

AUSTRALIAN CONSULTING ENGINEERS. CONSULTING ENGINE

1290 GREENDAL PUBLIC DO **CIVIL ENGI** DEVELOPME

ROAD 1 - LONGITUDINAL SECTION SCALE 1:1000 (NATURAL)

	N	OT FOR CONS	TRUCTION)
E ROAD, GREENPARK OMAIN WORKS NEERING PLANS	Drawing Title ROAD 1 LONGIT SHEET	UDINAL SEC 1 OF 2	TIONS	
ENT APPLICATION	Scale A1 1:1000	Project No. 200597	Dwg. No. 310	Issue A

DATUM RL 23.000	<u>SHEET 310</u>	v
HORIZONTAL CURVES	TION REFER S	> L37.9
VERTICAL CURVES		L94.39
VERTICAL GRADES	FOR (
DESIGN SURFACE LEVEL	33.578	33.368 33.368
FILL PAD		
CUT PAD	33.817	33.799
EXISTING	37.397	37.390
CHAINAGE	200	728.926

					Certification By:	Architect
					0141	
					11. Mittheway	mk
А	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	the trining	
Issue	Description	Date	Design	Manager	1 State	
-1 0	10cm 10cm			20cm	. 22	

								DES SUF	SIGN RFACE LEVEL	SURFACE LEV	EL		PAD RETAINI	NG WALL					FILL PAD
CUT PAD										1.805									
		∇			33.038			F			¥—							<u> </u>	
					/IP RL					2									
					>										_[70.00			
L37.9	~	L31.	69 L	1.38	 	R-25 _34.55	<		L110.39			->	 K75 L48.76 	>	< > L7.1	L11.1	< L23.93	L22	2.19
	_	<			K9.	88		~	< ><	K2	20.6		>	<					
L94.39					L8	80			L33.94	L	90					1	L82.14		
	-(L1).7% 34.39				<			7.4% L118.94	>	<			3 L12	% 7.14				
				Ľ															
33.368 33.368	33.328	33.302	33.486	33.514	33.848	34.832	35.030	35.986	38.488	41.313	41.648	41.974	43.156	43.677	43.890	44.223	44.942	45.007	45.621
														40.506	44.360	44.830	44.874	44.878	44.941
33.799	33.799	33.809	33.893	33.903	34.020														
37.390	37.428	37.492	37.665	37.675	37.760	37.853	37.857	37.850	37.792	37.176	37.167	37.193	39.223	40.453	40.620	40.785	41.027	41.049	41.233
728.926	734.391	741.561	760.616	761.995	774.391	796.545	800	814.391	848.33	893.33	006	906.937	938.33	955.693	962.793	973.895	997.826	1000	1020.468

ROAD 1 - LONGITUDINAL SECTION SCALE 1:1000 (NATURAL)

kd architects

40 60 m 20 1 SCALE 1:1000 @ A1

Scale

AUSTRALIAN CONSULTING ENGINEERS. CONSULTING ENGINE

INEERING PLANS SHEET 2 OF 2	
ENT APPLICATIONScaleA1Project No.Dwg. No.1:1000200597311	Issue A

NOT FOR CONSTRUCTION

-			VIP RL 64.463		× VIP RL 59.616					BIGN RFACE LEV	/EL		— EXISTING SURFACE L	EVEL	RL 46.054						FILL PAD						
															VIP F							·					
DATUM RL 28.000			-	_	_	_ +							-										- +				ZEFER B
HORIZONTAL CURVES	L18.67 L	R-7.75 ⊫= ≪ .0.75 L L4.44	17.26	− R-37 − L24. 	.75 55	L	.42.31	R-7.75	L38.05	R6	0 L4.96 9 L4.75) <	R225.3	8	L4.3	R72 4 L27	1.02 7.54 L2.2	R71.(L15.3	02 R10 L5 35 L6.13 L3.81	.14 > <	R-185.28 L54	R-162.79		R-618.02 L31.91	R-1202.77 L90.57	7	
VERTICAL CURVES	L18.96	. K	(3.05 L35	L0.97	K3 <u>.95</u> L30		<u>.</u>		_78.92			L40.93	><		 K18.2 L120	25				<			169.62				76.88 .100
VERTICAL GRADES	-3% L36.4	46	><	-14.5% L33.47				-6.9%	%)2		><		-7% L100.93									-0.4% L279.62					FOR CC
DESIGN SURFACE LEVEL	65.426 64.988 64.838	64.568	63.961 63.035	61.929 61.789	59.901 59.886	58.582	57.241	56.691 56.638		54.016	53.144 52.796		50.296		47.106 47.040	46.945	46.163	46.118 45.990	45.882 45.823 45.797	45.785 45.773	AE 600	45.428	45.376	45.233		45.024	44.900
FILL PAD															45.578 45.663	45.776	46.025	46.043 46.103	46.165 46.210 46.235	46.250 46.268	16 E63	46.711	46.782	46.905			
CUT PAD																											
EXISTING	65.665 64.146 63.496	63.377 62.605	60.988 59.489	57.982 57.825	56.082 56.073	54.907	53.356	52.753 52.701		53.786	51.764 51.480		49.432 49.413		45.491 45.034	44.752	41.108	40.843 40.230	40.084 40.004 39.982	39.969 39.953	787 OC	39.867	39.918	40.722		40.621	39.469
CHAINAGE	0 14.569 18.672	19.423 23.858	32.069 41.121	49.569 50.535	65.535 65.671	80.535	100	107.979 108.758		146.806 154 706	159.454 164.414		200 200.387		258.649 260.387	262.991	290.531	292.74 300	308.088 314.221 318.027	320.387 323.171	71 770	400	411.645	443.558		490.01	509.454

<u></u>___ REFER DATUM RL 26.000 R-1202.77 R34.31 L90.57 L5.42 HORIZONTAL CURVES VERTICAL CURVES FOR -0.4% VERTICAL GRADES L279.62 DESIGN 44.96 SURFACE LEVEL FILL PAD 16 CUT PAD EXISTING SURFACE LEVEL 39 <u></u> 509.454 CHAINAGE

 ∇

							Certification By:	Architect
							- all 4	
							VI. Mittan	mk
Α	ISSUE FOR DEVELOPMENT APPLICATION			27/11/2020	M.M.	J.B.	to trough	
Issue	Description			Date	Design	Manager	1 Stin J	
-1 0	1cm at full size	10cm				20cm		

ROAD 2 - LONGITUDINAL SECTION SCALE 1:1000 (NATURAL)

ROAD 2 - LONGITUDINAL SECTION SCALE 1:1000 (NATURAL)

60 m 40 20 SCALE 1:1000 @ A1

Scale

1290 GREENDAL PUBLIC D **CIVIL ENGI** DEVELOPM

	Drawing Title									
E ROAD, GREENPARK	ROAD 2)								
OMAIN WORKS										
	LONGITUDINAL SECTIONS									
INEERING PLANS	SHEET	1 OF 3								
	Seele A1	Project No.	Dwg No	lecuo						
	1.1000	200597	312	Δ						
	1.1000	200001	012	~						

NOT FOR CONSTRUCTION

					Certification By:	Architect
					(Aller)	mł
Α	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	to Trining	
Issue	Description	Date	Design	Manager	1 Stim	
-1 0	1cm at full size 10cm			20cm	. 22	

				ESIGN JRFACE LEVEL	FILL PAD		IP RL 45.841	EXISTING SURFACE	P RL 44.2				o RL 43.9		P RL 45.21		RL 44.7	FILL PAD			P RL 45.888	1
									 						≡ <u>*</u> 						¥	×
DATUM RL 25.000				-			+ ++-			<u> </u>								<u> </u>				
HORIZONTAL CURVES	R-/	452.03 	R-491.89 L96.01		R-314.96 L85.11		R-141 43 L13.59	R-141.43 L46.53		R-148.58 L75.71	R-148.58 L75.71	R-148.13 L77.68		< R-110.71 L38.22			R-315.79 L99.48	LO.9	R 3	-526.34 L75.67		R-923.71 L157.26
VERTICAL CURVES	K48.34 L75	<		L191.39		><	K14.17 L50	L8.31	K13.92 L40	L106.11		L106.11	<u>к</u> 10.95 L40	<u> </u>	(6.88 L30	L15.96	K28.03 L50	><	L71.14		K49.24 L80	4
VERTICAL GRADES				0.4% L253.89				-3.1% L53.31		-0.2% L146.11		-0.2% L146.11		3.4% L37.99	><	-0.9% L55.96			0.9% L136.14		>	-0.8% L155.89
DESIGN SURFACE LEVEL	44.820	44.954		45.403 45.416		45.729 45.743 45.714	45.585 45.585 45.582	45.072	44.392 44.344	44.159	44.050	43.941	43.939 44.083 44.138	44.166 44.590 44.693 45.047	45.091 45.091 45.073	44.928	44.812 44.811 44.825	44.918 45.121 45.120		45.539 45.635	45.706	45.638
FILL PAD	45.281	45.193 45.176		45.104 45.104		45.005 44.990 11 067	44.935 44.935 44.931	44.890	44.816 44.807				44.801 44.811	44.816 44.868 44.879 44.879	44.930 44.945 44.957 44.976	45.022	45.081 45.083 45.100	45.128 45.128 45.162 45.162		41.763	45.114 45.123	45.125 45.146
CUT PAD	-									36.256 35.962	35.933	35.917	36.804									
EXISTING SURFACE LEVEL	37.411	37.515 37.528		37.428 37.547		40.811 40.963	41.243 41.243 41.243	41.295	41.217 41.192	40.955	40.267	40.445	40.457 40.340 40.347	40.350 40.362 40.355 40.355	40.339 40.369 40.344 40.301	40.057	39.984 39.982 39.943	39.903 39.852 39.852		39.859 39.959	40.336 40.788	40.914 42.072
CHAINAGE	859.454 881.087	900		1000 1002.797		1072.475 1078.845	1097.475 1097.475 1100 1101.495	1122.475	1148.027 1150.782	1170.782	1209.454	1276.891	1279.138 1296.891 1300	1301.42 1316.891 1319.877 1334.877	1339.641 1339.641 1343.605 1349.877	1365.836	1390.836 1391.386 1400	1415.836 1439.117		1486.98 1500	1515.722 1526.98	1529.934

ROAD 2 - LONGITUDINAL SECTION SCALE 1:1000 (NATURAL)

kd architects

40 60 m 20 1 SCALE 1:1000 @ A1

Scale

AUSTRALIAN CONSULTING ENGINEERS. CONSULTING ENGINE

1290 GREENDALE PUBLIC DC **CIVIL ENGIN** DEVELOPME

		OT FOR CONST	RUCTION	,
E ROAD, GREENPARK OMAIN WORKS NEERING PLANS	Drawing Title ROAD 2 LONGIT SHEET	UDINAL SECT	IONS	
ENT APPLICATION	Scale A1 1:1000	Project No. 200597	Dwg. No. 313	Issue A

			PAD RETAININ	G WALL					
		DESIGN SURFACE LEVEL	IP RL 44.715		EXISTING SURFACE LEVEL	FILL PAD	/IP RL 45.561		VIP RL 45.399
		_ 		<u> </u>		¥			
DATUM RL 28.000	ON REFER 3			- +					
HORIZONTAL CURVES		R-923.71 L157.26	><		R-968.58 L153.18	><	R-902.11 L78.02	R-465.49 R-4 L46.41 L	465.49 R-465.49 46.41 L12.89
VERTICAL CURVES		L78.39	 K61.8 L75 		L130.91	>	K44.88 L30	L53.3 L53.3	K6.25 L20 L8.89
VERTICAL GRADES		-0.8% L155.89	><		0.5% L183.41		><	-0.2% -0.2%	2% 3% 3.3 L18.89
DESIGN SURFACE LEVEL	45.587	45.338	44.851	44.822 44.827 44.888 44.888	45.255	45.376 45.492	45.530	45.491 45.482 45.471	45.419 45.418 45.479 45.698 45.698
FILL PAD	45.151	45.169 45.179	45.179	45.178	45.133	45.113 45.087	45.056 45.038	45.005 44.998 44.985	44.922 44.917 44.884 44.869 44.865 40.868
CUT PAD	_								
PAD RET WALL	45.151	45.169 45.179	45.179	45.177 45.177 45.177	45.133	45.113 45.087	45.066 45.055 45.038	45.005 44.998 44.985	
EXISTING	42.072	43.033	38.694 38.472	38.407 38.487 38.620	39.055	38.634 38.247	38.139 38.148 38.164 38.164	38.337 38.411 38.500	38.851 38.860 38.919 38.951 38.972 38.929 38.929
CHAINAGE	1559.454	1600 1645.374	1672.983	1591.869	1800	1826.161	1866.283 1871.987 1881.283	1900 1904.177 1909.454	1934.583 1935.877 1944.583 1950.583 1963.473

			Certification by.	Architect
			- anti-	ml
			(wall !!!	IIIK
A	ISSUE FOR DEVELOPMENT APPLICATION 27/11/2020 M.M.	J.B.	Het 1	
Issue	Description Date Design	Manager	1 Stand	
-1 0	1cm at full size 10cm	20cm		

kd architects

Scale

AUSTRALIAN CONSULTING ENGINEERS. CONSULTING ENGINE

1290 GREENDALE PUBLIC DC **CIVIL ENGIN** DEVELOPME

ROAD 2 - LONGITUDINAL SECTION SCALE 1:1000 (NATURAL)

	· · · · · · · · · · · · · · · · · · ·			•
E ROAD, GREENPARK OMAIN WORKS NEERING PLANS	Drawing Title ROAD 2 LONGIT SHEET	UDINAL SECT	IONS	
ENT APPLICATION	Scale A1 1:1000	Project No. 200597	Dwg. No. 314	Issue A

NOT FOR CONSTRUCTION

CHAINAGE 200

					Certification By:	Architect
					(N In	
					W. Miles	mkr
A	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	Ho Tunut	
Issue	Description	Date	Design	Manager	1 Stan	
-1 0	10cm at full size 10cm			20cm		

	EXISTING SURFACE LEVEL	
39.175	35.576 35.576	
38.028	37.967	
11.291	16.732	

DATUM RL 34.500			
DESIGN SURFACE LEVEL	44.800	40.800 40.800	38.756
EXISTING — — — SURFACE LEVEL	39.147	38.756	
OFFSET	-18.41	-13.41	

architects

4 SCALE 1:100 @ A1

Scale

6 m

			EXISTING SURFACE LE	EVE	ĒL								PROPOSED BATTER
		<u>a*</u>	₽ ₽ 3%	CX		3%	CENTRE LINE	DESIGN SURFACE LEVEL	КО				
DATUM RL 32.500				Ĺ									
DESIGN SURFACE LEVEL	33.915	33.923	33.818	33.818	33.668	33.578			33.422	33.572	33.572	33.572	33.719
EXISTING — — — SURFACE LEVEL	37.394	37.394	37.395	37.395	37.395	37.397			37.408	37.409	37.409	37.411	37.414
OFFSET	-6.696	-6.650	-3.150	-3.030	-3.000	0.000			5.200	5.230	5.350	5.850	6.730
					C								

CHAINAGE 700

			EXISTIN SURFAC	G E I	LEV	EL						PR BA	OPC TTE	DSED R
			۹. ۲. ۳. ۳.	KO)	3%	CENTRE LINE	DESIGN SURFACE LEVEL	КО			in	6	
DATUM RL 33.500														
DESIGN SURFACE LEVEL	34.911	34.779	34.674	34.674	34.524	34.434			34.278	34.428	34.428	34.428	34.685	
EXISTING — — — SURFACE LEVEL	37.852	37.843	37.805	37.804	37.803	37.771			37.715	37.715	37.714	37.708	37.692	
OFFSET	-7.447	-6.650	-3.150	-3.030	-3.000	0.000			5.200	5.230	5.350	5.850	7.392	

CHAINAGE 600

					Certification By:	Architect
					H. MADOW	mkd
A	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	Here I	
Issue	Description	Date	Design	Manager	1 Stip 1	
-1 0	1cm at full size 10cm			20cm	. 2	

architects

6 m 4 2 SCALE 1:100 @ A1

Scale

AUSTRALIAN **C**ONSULTING AUSTRALIAN CONSULTING ENGINEERS. BUDGINEERS. AUSTRALIAN CONSULTING ENGINEERS. BUDGINEERS. AUSTRALIAN CONSULTING ENGINEERS. BUDGINEERS. BUDGINES AUNA BUDGINEERS. BUDGINEERS. BUDGINEERS. BUDGINEERS. B

1290 GREENDALE ROAI PUBLIC DOMAIN CIVIL ENGINEERIN DEVELOPMENT AP

	PROPOSED BATTER					DESIGN			- PROPOSED BATTER
		1 in -6	요	2 2	3%		Q Q		
						EXISTING SURFACE LEVEL			
DATUM RL 40.000									
DESIGN SURFACE LEVEL	44.853	45.352	45.247	45.247 45.007	45.007		44.851 45.001	45.001	45.001 44.894
EXISTING — — — SURFACE LEVEL	41.044	41.052	41.061	41.061 41.061	41.049		40.992	40.991	40.985 40.978
OFFSET	-9.641	-6.650	-3.150	-3.030	0.000		5.230 5.230	5.350	5.850 6.489

 	-
32	<u>n</u>
40.43	44.94
881	
37.	
16.061	
-	

		OT FOR CONSTRU	JCTION)
ND, GREENPARK N WORKS ING PLANS	Drawing Title ROAD 1 CROSS SHEET	CROSS SECTIONS SECTIONS 2 OF 2	DNS	
PPLICATION	Scale A1 1:100	Project No. 200597	Dwg. No. 321	Issue A

CHAINAGE 1000

	PI	ROPOSED – BATTER		_		2			-3%	/6	ROAD	CENTRE	3%
DATUM RL 51.000			1 in -6										
DESIGN SURFACE LEVEL	56.123				57.235	57.235	57.235	57.085			57.241		
EXISTING — — — SURFACE LEVEL	56.123				54.640	54.528	54.502	54.495			53.356		
OFFSET	-12.524				-5.850	-5.350	-5.230	-5.200			0.000		

					Certification By:	Architect
					(Aller)	mkd
Α	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	the triging	
Issue	Description	Date	Design	Manager	1 Stin J	
-1 0	1cm at full size 10cm			20cm		

CHAINAGE 100

CHAINAGE 200

51.592	
51.592	
42.616	

					CHAINAC	JE 400
					Certification By:	Architect
					(Alfred	mk
А	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	the Trunk	`
Issue	Description	Date	Design	Manager	1 Start	
-1 0	1cm at full size	_		20cm	1 2	

	PROPOSED – BATTER						
		1 in 6		₽ 2		-:	3%
				*			
DATUM RL 36.500				ţ		 	
DESIGN SURFACE LEVEL	45.152	44.938	44.938	44.938	44.788	 	
EXISTING — — — SURFACE LEVEL	37.610	37.593	37.587	37.585	37.585		
OFFSET	-7.130	-5.850	-5.350	-5.230	-5.200		
							С

- DESIGN

ENGINEERS. AUSTRALIAN PTY LTD - A.C.N. 084 059 941 CONSULTING ENGINEERS. LEVEL 4, 470 CHURCH STREET NORTH PARRAMATTA NSW 2150 PH: (02) 9763 1500 FX: (02) 9763 1515 EMAIL: info@aceeng.com.au

					Certification By:
					4. Million
А	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	to Trink
Issue	Description	Date	Design	Manager	11 Stort

					- EXISTING SURFACE LEVEL					
			t	-						
DESIGN SURFACE LEVEL	45.066	45.371 45.371	45.371	45.221		45.377	45.467	45.617	45.617	
EXISTING — — — SURFACE LEVEL	37.216	37.265 37.278	37.281	37.282		37.428	37.514	37.515	37.519	
OFFSET	-7.682	-5.850	-5.230	-5.200		0.000	3.000	3.030	3.150	
CHAINAGE 1000										

SURFACE LEVEL				41.	41.	41. 41.	
OFFSET				0.000	3.000	3.030 3.150	
						С	HAINA
	PROPOSED BATTER 1 in -6	У Д	-3%	CENTRE LINE	3%	9 9 9 9	₽ 3%

DATUM RL 40.500					
DESIGN SURFACE LEVEL	45.594	45.684	45.834	45.834	
EXISTING — — — SURFACE LEVEL	41.243	41.266	41.267	41.267	
OFFSET	0.000	3.000	3.030	3.150	

3%

DATUM RL 35.000 DESIGN SURFACE LEVEL EXISTING 98 Lig 12 13% 0 0 00 0 00	-EXIS SUR
DATUM RL 35.000 DESIGN	
DATUM RL 35.000 DESIGN SURFACE LEVEL EXISTING 987 2.84	
DESIGN 88 bit 181 bit 181 bit	
EXISTING — — — <u>88 28 28 28 88 88 88 88 88 88 88 88 88 8</u>	
SURFACE LEVEL \$\$	
OLLESED 0.000 0.00	
CHAINAGE 1200	

PROPOSED -

- PROPOSED PEDESTRIAN SAFETY RAIL

- PROPOSED ROAD BARRIER

ISTING RFACE LEVEL

- DESIGN

Ë

3%

CHAINAGE 1500 - SUSPENDED BRIDGE

Issue

6 m

mkd architects

Architect

4 SCALE 1:100 @ A1

Scale

Certification Architect A ISSUE FOR DEVELOPMENT APPLICATION 27/11/2020 M.M. J.B. Date Design Manager Issue Description -1 0 1cm at full size 20cm

Scale mkd architects

4 6 m 2 SCALE 1:100 @ A1

AUSTRALIAN CONSULTING ENGINEERS. AUSTRALIAN PTY LTD - A.C.N. 084 059 941 CONSULTING ENGINEERS. LEVEL 4, 470 CHURCH STREET NORTH PARRAMATTA NSW 2150 PH: (02) 9763 1500 FX: (02) 9763 1515 EMAIL: info@aceeng.com.au

1290 GREENDAL PUBLIC DO **CIVIL ENGI** DEVELOPME

	L N	OT FOR CONST	RUCTION	
E ROAD, GREENPARK OMAIN WORKS NEERING PLANS	Drawing Title ROAD 2 CROSS SHEET	CROSS SECT SECTIONS 4 OF 4	ΓIONS	
ENT APPLICATION	Scale A1 1:100	Project No. 200597	Dwg. No. 325	Issue A

MAX EXPECTED

EROSION

ΔZ

GABION RETAINING WALL (FOR ILLUSTRATION PURPOSES ONLY) SCALE N.T.S.

					Certification By:	Architect
					(Aller)	mkc
A	ISSUE FOR DEVELOPMENT APPLICATION	27/11/2020	M.M.	J.B.	Ho Twining	
Issue	Description	Date	Design	Manager	1 Star	
-1 0	1cm at full size			20cm		

LEGEND

	LOT BOUNDARY	E1
<u>KO</u>	PROPOSED KERB ONLY	
	PROPOSED KERB AND GUTTER	BB
	PROPOSED ROAD CENTERLINE	Ex. BB
////////	PROPOSED EDGE OF BITUMEN	
	PROPOSED ROAD PAVEMENT	
	PROPOSED CONCRETE FOOTPATH	

	NOTE: FOR GENERAL NOTES REFER TO DRG No. ACE171359.CIV.DA.000	NOTE: ALL WORKS SHOWN ON THIS PLAN ARE SUBJECT TO SEPARATE APPROVAL BY LIVERPOOL COUNC	L.				
						Certification By:	Architect
						(NI.	
						- anti-	mld
						V. Matter	IIKU
А	ISSUE FOR DEVELOPMENT APPLICATIO	N	27/11/2020	M.M.	J.B.	Herring	
lssue	Description		Date	Design	Manager	1 start	
0	1cm at full size	10cm			20cm		

LONGITUDINAL LINES EDGE LINES

- CONTINUITY LINE
- STOP/ HOLD LINE
- **BB LINEMARKING**
- EXISTING BB LINEMARKING
- EXISTING EDGE OF BITUMEN
- EXISTING ROAD CENTRELINE

N.T.S.

	NOTE: FOR GENERAL NOTES REFER TO DRG No. ACE171359.CIV.DA.000	NOTE: ALL WORKS SHOWN ON THIS PLAN ARE SUBJECT TO SEPARATE APPROVAL BY LIVERPOOL COUNC					
						Certification By:	Architect
						() 15	
						(the -	mkd
						H. Millow)	IIINU
A	ISSUE FOR DEVELOPMENT APPLICAT	ION	27/11/2020	M.M.	J.B.	HER I	
Issue	Description		Date	Design	Manager	1 Stiller	
-1 0	1cm at full size	10cm			20cm		

GHD

Level 6 20 Smith Street T: 61 2 8898 8800 F: 61 2 8898 8810 E: ptamail@ghd.com

© GHD 2020

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

12517741-96568-32/https://projectsportal.ghd.com/sites/pp15_04/1290greedaleroad/ProjectDocs/12517741-REP_1290 Greendale Road Water Sensitive Urban Design Assessment.docx

Document Status

Revision	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
Draft	R Berg	A Priory	iConnect	N Bailey	iConnect	29/10/2020
Rev 1	R Berg	A Priory	iConnect	N Bailey	lieg	30/11/2020

www.ghd.com

